If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=396
We move all terms to the left:
x^2-(396)=0
a = 1; b = 0; c = -396;
Δ = b2-4ac
Δ = 02-4·1·(-396)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{11}}{2*1}=\frac{0-12\sqrt{11}}{2} =-\frac{12\sqrt{11}}{2} =-6\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{11}}{2*1}=\frac{0+12\sqrt{11}}{2} =\frac{12\sqrt{11}}{2} =6\sqrt{11} $
| 99=3y+8y | | 14+7p=-49 | | n/5=4/9 | | 10=w/5+8 | | 10=w5+8 | | 12−5/1r=2r+ | | 5^(3x-7)=105 | | a/4=a | | 0.5(x-12)+0.2(x+7)=0.3+1.4 | | 14x-9x2-10=0 | | p/6+12=14 | | 2=-t/6 | | 4x+5÷3=-3 | | 51/4+x=-7 | | 2=-t6 | | a-a-a=12 | | 2(3x-1)=-6-2 | | 0=x^2x-24 | | 9x+5=+37 | | 54=w(w-3) | | 0-6x=8=8x | | 16−2t=2/3t+9 | | 2/3x-7=62 | | 15x-6x=(-x+3)-(x+2+10) | | 4x+6=8x+9 | | 2x+41=5x-4 | | 280*2.67+770*x-6.13*742=0 | | 130x=180 | | 0=10x-(40000+6x) | | -3+11=14x-5-13x | | 6(x-7)-8x=-32 | | -17-(-28)=x/7 |